DEPARTMENT OF MATHEMATICS

Programme outcome:

On completion of the programme, the student will

1. Have good knowledge and understanding of core areas of Mathematics including Calculus, Mechanics, three dimensional geometry, Differential equations and Abstract algebra.

2. Be able to employ different methods of proofs of theorems to solve problems including direct proof, method of contradiction and mathematical induction.

3. Be able to criticize mathematical arguments encountered during interaction or while reading text books.

4. Be able to develop and maintain problem solving skills, to read and understand basic proofs.

- 5. Be able to work on their own during preparation for competitive examinations.
- 6. Be able to spread the knowledge of the subject to school students.

Course Name	Course Outcomes
Paper I Calculus I	Students should be able to
and Algebra I	1. solve problems on matrices and sets including solutions of equations by
-	matrix methods.
	2. plot graphs of functions and to determine continuity or discontinuity from
	the graph.
	3. compute limits using methods including L-Hospital's rule.
	4. understand the geometrical meaning of definite integral and derivative
	, the relationship between derivative and definite integral as expressed in
	fundamental theorem of integral calculus.
	5.solve differential equations of various forms by the available methods
	taught to them.
Paper II Geometry	The student should be able to
and Vector	1. understand and visualize straight lines, planes, spheres, cylinders, cones,
Calculus	to determine their equations, solving problems on these and other related
	problems in real life.
	2. Represent vectors analytically and geometrically and compute dot product
	and cross product of vectors,
	3. Compute the curl and divergence of vector fields, directional derivative,

	gradient of scalar valued functions and interprete these geometrically.
Paper III Algebra	The student should be able to
II and Calculus II	1. understand the definitions of groups, determine whether a set with a
	binary operation is a group, determine whether a group is cyclic, find the
	number of subgroups.
	2. distinguish between reducible and irreducible polynomials, solve
	polynomials over rationals by the available methods, apply division
	algorithm.
	3. find limits of sequences, determine convergence of sequences and series
	by different tests of convergence, apply mean value theorems in simple
	functions, determine whether the function is homogeneous and hence
	answer related questions.
	4. apply integrals to find areas of plane curves and surfaces and volumes of
	solids of revolutions.
Paper IV Statics	The student should be able to
and Dynamics	1. understand action of forces and construct diagrams maintaining
5	equilibrium of forces based on the problems.
	2. apply various laws of forces mentioned to solve problems and to relate to
	real life problems including forces of friction.
	3. understand the basic concept of velocities, accelerations, forces, work,
	kinetic energy.
Paper V	The student should
Elementary	1. have a working knowledge of important mathematical concepts such as
number theory and	finding remainder using division algorithm and congruence, order of
advanced algebra	element of a group, order of finite group and normal subgroups.
	2. be knowledgeable of the examples of ring, fields, vector spaces and linear
	transformations.
	3. be able to relate matrix with linear transformations.
Paper VI	The student should be able to
Differential	1. identify techniques for solutions of differential equations and also their
equations and	applications in other branches of science besides mathematics.
advanced	2. learn to analyse kinematics of particle motion and plane motion of rigid
dynamics	bodies and construct free body diagrams.
	3.understand the basic concepts of velocitiy, force, mass and acceleration,
	work and energy, impulse and momentum.
Paper VII	The student should be able
Advanced	1. To read and write proofs for basic theorems involving fundamental tools
Calculus	of continuity and differentiability.
	2. Toanalyse the problems and identify available techniques for solving
	them.
Paper VIII	The student should be able
Operations	1. To analyze a problem and arrive at a mathematical formulation using
Research	which the problem can be tackled.
	2. to understand the characteristics of different types of decision-making
	environments and the appropriate steps and tools to be used.